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Abstract: This paper presents a number of modifications o artificial neural network models for improving predictions of algal
bicoms. These include a method for finding the optimum hidden layer configuration, 10 fold cross-validation 16 increase
representation of data in the training and validation sets, and controlied training © increase the probability of finding the global
optimum training error.  These enhancements have succeeded in wnproving the perfarmance of neural network phytoplankion
meodels in two key areas: i) the model is valid for a broader spectrum of algal species, and i) a more accuraie estimation of the
model’s performance when applied 1o new data is obtained. The case study used was Lake Kasumigaura, Japan.

A number of modifications 0 the methodology used by

1. INTRODUCTION Freach and Recknagel (1994), Recknagel et al. (1997a) and

Recknagel ot al. (19976) will be introduced in this paper.
The poteatial of a new type of empirical modet using ncural These include 1) more careful optimisation of the hidden
networks trained an historical water quality databases has layer, 1) iO-fold cross-validation instead of conventionai
been demonstraicd by French  and Recknugel  (1994), sphit-ploi vabdation, and i:1) a more complete exploration of
Recknagel et al. (1997a), and Recknagel e al, (1997hy. input layer dimensionality. The aim of these modifications
These studies showed that neural nelworks arc capable of has been 1o produce a mode! which is valid for a wider cross-
predicting algal blooms with superior temporal resolution section of algal species.

than other types of phytoplankion growth models such as
empirical sieady state models, deterministic models, time

series models and fuzzy models {Recknagel et al., 1997a). 2. MATERIALS AND METHODS

Furthermore, these neural network models are capable of

predicting the species of phytoplankion respoensible for the 2.1 Materials - Luke Kusumigaura Database

bloom where as previous models could at best only predict

asseinblages of species Lake Kasumigaura {Japan) is s shallow hyperoophic lake
which suffers frequent severc algal blooms. i is fully mixed

The feed-forward neural meiwork phyloplankion  model all year round, has a wide (emperature range, and is fnghty

pioneered by the above authors is comprised of three layers of unstable with regards 0 nutrient loads.  Heace i is

ariificial neurons.  Water quality parameters deemed 10 be characterised by high stochasticity of the environmental

{orcing functions comprise the nodes of the input fayer of the variablcs which affeet growth of phytoplunklon.  These

neural nelwork. These parameters typically include nutrient properties make it an adeal acd lest for a phyioplankion

concentrations, Light intensity, chlorophy!l o concentration, population modeliing system. The fake is well studied, and a

woplanklon populations and lemperature conditons,  The comprehensive database of water qualily and aigal quantity

oulput layer nodes of the network represent a quanlity cbservations spanning the period 1981 w0 1993 is avallable.

measure of the relevant phytoplaniton species. Connection This casc study has been used 0 benchmark progress in

weights  between  the  layers  of  nodes are  sol by ncural nelwork modelling applicatons by Recknagel et al.

backpropagation training using a historical ume series of {19974}, and Recknagel et al. (1997h).

water quatity and algal population vectors. When training i

complele the conncction weights are frozen, and  the Missing values in the water guality record bas forced previous

generalisation performance s estimaied using the splu-plot neural network studics by the above authors o consider a

validation method. This methed wests the predictive ability of timited selccuon of parameters measured from 1984 10 1993,

the trained network on independent vatidation sel comprising By notsavesligaling all the inputs available it s possibie that

of enc or mere years of data excluded from the Lraining set, onc or more paricelarly uselul doving varnables were

Tabe §: 6 Input Layer Permutions

NMNo.  Timespan  # Inputs _#Records Inputy

K1 Hagi - 63 4 222 POS-P, DIN, Waler Temp, Light
K2 Rt - u2 b 182 K1+ 51 Rain, Radiavon, Diaphanosoma, Baosming
K3 98] - Ry 12 137 K2+ Rotfera, Cladocera, Copepoda
K4 1084 - 43 G 157 K1+ NO3-N, Secchi Depth, Water Depth, Dissolved Crygen, pi, Chi-a
K5 1984 - 492 1d 17 K4 + 51, Ran, Radition, faphanasome, Bosming
Ko R P RO Retfera, Cladosera, Copepede
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excluded. For the experiments presented in this papes, six
permutations of the inpul paramelers were devised 10 allow
ail the available water qualily parameters Lo be used as inputs
(sce wble 1}, These inpul layer structures are indicative of the
spans of the data for cach parameter through the Hime sSerics.
By using ali the data available there is no chance that uselul
driving variables are being omiticd {rom the model. However
there may be an increased risk ol overfitting by the
introduction of irelevant, or noisy inputs. This risk can be
minimised by careful optimisaton of the hidden fayer as
discussed below.

2.2 Methods

2.2.1 Background

Previous implementations of artificial neural networks for
predicting phytoplankion blooms used a process of trial and
error supplemenied by rules of thumb o find the optimum
configuration of the hidden layer. In this swdy, the effect
that hidden layer configuration has on model performance is
considered in greater depth, The number of hidden nodes in
the hidden layer is one way o conwrol the complexity of the
function approximated by a neural network (Smith, 1993).
Weiss and Kulikowski (1991), Masters {1993}, Sarie (1997)
and others make general assumptions about the cffect of the
number of hidden nodes, and hence model complexity. on
training and validation performance.  As bidden nodes arc
added, the mode! gains complexity causing the traitung error
i fall as the model generates a morz accurale map ol the
training database, The validaton crror may fali wt first,
stabitise al an optimum, and then fise as overfluung or nowse
modelling starts o ke effect.  Optimising the number of
nidden nodes is a simpie mauer of ivcidng the wodel
complexity between upper and lower bounds which offers the
hest validation performance, Comparing validaiion results of
a number of actworks with dulerently sized hidden layers is
the most refiuble way to identify the best compromise i
model complexily (Masters, 1993}

French and Recknagel {1994), Recknagel et ab. (19974a) and
Recknage! et al {1997b) used the split plor method of
estimating the generalisation or interpolative performance of
ncural aclwork phytoplankion models.  This  vahdaton
method is statistically inefficient in situations where data Is
scarce, as the need to exclude a sulficienily large amount of
data for validation rcduces training set representation.  An
alternative form of validation which makes more efficient use
of data is 10-fold cross-validation. The dataset s randomly
splitinto 30 subsets. 0 networks are created using cach of
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the 10 subsets for validation and the remaining 9 subsets for
waining. The generalisation error estimate of the model is
calculated by averaging the error obtained for all {0
validation sets. Cross-vatidation provides an almosl bias free
estimate of  generalisation  performance (Weiss  and
Kulikowski, 1991; Ripley, 1996).  90% waining secl
representation ncreases the probabitity of producing a good
model. 100% validation set representation reduces the effect
of variance on the estmate of generalisation performance.
Frgure 1 illustrales an example of spiit-plot validation as used
by French and Recknaget (1594), Recknagel et al. (1997a)
and Recknagel et al. (1997h). Two years of data, e.g. 1986
and 1988, have been excluded from training for validation.
Figure 2 illustrates a single cross-validation training run. A
small random sample {approx. 10% for 10-fold cross-
validation) of records over the ecntire dalasel have been
excluded for validanion purposes. This process is repeated 10
times during which time all of the data is used exactly once in
the validation sel.

Previous studies of neural network phytoplankton models by
French and Recknagel (1994), Recknagel et al. (1997a), and
Recknagel et al. (1997b) interpolated lake data 10 produce a
daily time series from a database with a varying temporal
resalution of 1 day to several months. In this study, the use of
cross-validation introduced a problem in using interpolated
dawabases. Independence of training and validaiion daia is an
gssential reguirement o unbiased estimation of the validation
error (Masters, 1993y, Cross-validation requires random
drawing of validation datasscts from the total database. [l the
Lime series has been augmented with interpolated values, 12 is
impossible o prevent a randomiy selected validation set {rom
conlaining values which have been calculated from values in
the training set during the interpolation process. Hence the
independence of the two sets is destroyed.

2.3 Implementation

Networks with 1, 3, 5, 7, 10, and 20 hidden nodes arranged
in & single hidden layer were trained for cach ol the
cxperiments outlined in wble {. While this is by no means 2
complete exploration of the effect of hidden nodes on modcl
performance, 1t is expected that it will be cnough 10
demonstrale the relationship between network  validation
performance and the number of hidden nodes.

Il the neural network is not wained to a global oplimum due

o premature siopping of Uaining, or cnwrapment 2t local

aptima, the configuragon of the hidden layer is no longer the

sole delerminant of the complexity of the function being
Training
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Figure 2: One Cross- Validation run



approximated by the network. This source of variance needs
o be climinated 10 make a meaningful comparison of hidden
layer configyrations. As yet there 1S no learning rule which
guaraniees that the giobal optimum can be found cvery time a
network is trained, The only method of improving peace of
mind is o increase the probability that the global opumum
will be found. [n this case siudy a2 numbcer of cnhancements
o conventional backpropagation were apphied 10 achieve this
aim.

The “Neural” software package (bundled with Masters, 1993)
was used o train all networks. This software employs the
conjugale gradient opuimiser instead of the more usual
backpropagation learning rule. Optimisation algorihms are
repuled o lead to fasier training than backpropagation
(Masters 1993, Ripley, 1996; Sarle, 1997), and have an
additional advantage in that there is no need w0 scl the siep
size or a momentum coefficient.

The Neural package (Masters 1993) has 4n additiona! feature
where it employs a8 simulated annealing algorithm when
convergence has been achieved which attempis to shake the
system out of a local optimum.  Simplaied anncaling is an
optrmisation algorithm which takes a series of random steps
of decreasing size in the search space, and rewains those steps
which tcad 10 lower error. The networks were trained for as
many ilerations as neccssary o CONverge on an opumum
solution.

As a final less elegant guard against local optma, each
network was (rained o convergence flive tmes using different
random initialisations of connection weights.  Ouwl of these
five runs, the set of network weights which yickded the best
training error measurement was saved for validation as this
welght vector 18 the closest to the global optimum.

Uniike the water guality time series, records of algal quaniity
are unbroken for the entire duration of the tme series. This
allowed the 8 most important phytoplankion species in terms
of bloom (iensity to be used as outputs lor all 6 input
structures used (see table 1), Neither tume nor previous
phytoplankton populations were conswdered as inputs w the
models in this study. The neural notworks were tramed W
predict the phytoplankion populauon o cells per mi which
existed at the same tme each measurement 15 wken.
Uninterpolated data was used,  10-fold cross-validation was
used o estimate the vahdation performance.

i RESULTS AND DISCUSSION

A Sammary of Validation Results

The fit performance of the walidauon runs was cvaluaied
visuatly, Performance w evaluasted acconting o the followmg
i} the hming of predictions matches the uming of
chserved bloom events, ) the magnitude of predictions s
proportionst o the magnitude of observed events, and wit the
shsence of sigmificant fubse predictiony e correct prediction
of nulb quantity). Figures § 1o 5 illusteate how this subjective
The dotted hwne mdicates the neural
network predicion on mdependent diatn. Froure 3 depicts an
exgimple where the mode! fals W opredicr the ming of the

crelorig

evialuation  works,
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actual bloom events. Figure 4 illustrates an example where
the timing of a bloom s well predicted, but the magniludes
are not proportional 1o the actual events. [n addition there is
a significant false predicuion. Figure 5 illustrates a case
where all three criteria are well matched.
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Figure 3: Cyclocelia - Poor timing
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Figure 4: Cyciptella - Good Liming but poor magnitudes and
a false prediction
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Figure 5: Cyvoiorelia - All crieria well handied

Figures 6 w0 13 plol observed and predicied cell counts versus
tme for the 8 species of phytoplankton considercd by the
maodel in validaton mode. These graphs show that the model
s capabic of predicung the tming of nearly ail bloom cvents
for all ¥ species considered by the model The predictive
performance of the modet secording w the other two eriteria
(e mapnitude and faise predictions) varies according o
species. It can be observed that the species performance falls
it three distinet groups, Very good predictons of quantity
are available Tor Mucracystis, Anabaena, Osciliatoria, and
Ochiramonas (Ngures H 09y For cach of the species there s
a eood compromise of the tumeg, magniode, and false
predicuon perfosmance measures, Quite pood predictions are
avinfable (or Oyclotella, and Gomphosphacria (ligures 10



and 113 The timing and faise prediction aspects of
performance are very good, but the ability of the model 1o
predict magnitude of blooms is not so good. Fair resulls are
available for Phormidium and Synedra (figures 12 and 13}
Timing of biopm predictons is very good, but there is a
significant problem with magnitudes and false predictions.
Note that the optmum predictive performance for each aigal
specics was achieved with differcnt bidden and input layer
conligurations.

3.2 Comparisons with Previous Work

The value of the modifications o the neural network
phyloplankion model presented in this study can be iltustraied
by comparing the validaton performance wilh  previous
models for Lake Kasumigaura developed by Recknagel et al.
{1997a) and Recknagel et al. (1997h),

Recknagel et al. (1997b) developed a neural network madel
which proved to be valid for live problem biue green algae
specics in Lake Kasumigaura - Microcystis, Oscillatoria,
Phormidium, Gomphosphaeria, and Ancbaena.  This wide
species generality was obtained 1hrough selection of a set of
training data (corresponding 10 a year) which produced a
neiwork with the best performance on the validation set
Because the validation set was used o wentily training data
which yicided the best resulis, 1t can be argued that the
independence between taining and valdation sets is reduced.
As a result, the validation result achieved is likely 1o be an
opumistically biased estimate of the model's ability
generalise to new data. The validauon resulls presented in
this paper have been achizved using an unbiased validation
procedure. Hence there is a higher degree of confidence that
the predictive performance demonstrated can be repeated on
newly sampled data. Weiss and Kulikowski (1991) and
Ripley (1996} provide some insight ine the degree of
confidence which can be placed in a validation resull.

Recknage! et al, {1997a) on the other hand used an
independent validation sei. Because of this, the resulls of this
investigation give a better idea of how Lhe model riight
perform when confronted with new data. The trained neural
net in this stdy obtained good performance in terms of the
criteria specified in section 3.1 for o single speaies -
Microcystis. Biooms of the other two species considercd by
the made! {Oscitlatoria and Phormidiwn) were nol predicted.
it can be concluded that modifications w the methodology
introduced in this study have mcrcased the species generality
of the model, as good predictons o validaton are pow
avaifable for & species, and Tar predictions were achicved
with the remaining 4 species.

3.3 Fffect of Hidden Layer Confipuration

vahdation performance. Results are llustrated for the mput
layer configuraton which yickded the best performance for
cach specics, The performance score is cabealated from the

Tuble 2 shaws the olffect of the number of ndden nodes on

number of criterin cutlined above sn section 3.1 which are
satislicd. As an cxplunaton ol this scormg system, the
cxampie  validations  ilustrated s figures 3w 5 are
consiclered again. The validaton pHustrated i Dgore 3 would

score O as none of the performance criteria are satisfied.
Figurc 4 would gain a score of 1 due o the correct prediction
of the timing of ihe observed events. Figure 5 obtaing the
maximum possible score of 3 as the model correctly predicis
the timing and magaitude of blooms. Additionaily, there are
no sigoificant lalse predictions,

Table 2: Effect of # Hidden Modes on Validation
Performance (* denoles that result is graphed - see figures 6

o ld)

_No HiddenNodes [ 3 5 7 16 26  Input
Anabaena 1 3 202 1 0 K3
Cyeclotella g 0 2x 2 1 1 K4
Gomphosphaeria ¢ 1 1~ 1 1 ! K5
Microcysiis 2 2 2 2 3 3 K3
Ochromonas 2 P i 3= 1 1 Ké
Osciflatoria 0 1 2002 3 0 K5
Phormidium 0 0 0 G * G K4

Synedra 0 0 0 0 0 1* XS

In general validation performance improved with added
hidden nodes, reached an optimum, and then declined. This
resalt corresponds with the assumptions described in section
2.2.

These results indicate thay validation performance varics
according 10 hidden layer configuration.  This observation
has noteworthy implications. Firesily, it 1s demonstrated that
carcful optimisauon of the hidden layer can have a profound
effect on ncural net performance and therefore should be
taken seriously. Secondly, the hidden layer configuration is
an impornant source of variation in validation performance
which should probably be accounted for before investigation
of other potential sources of vanation such as input layer
configuration or data representation.  1f hidden layers are not
optimised, it is possibly dangerous 1o conclude that
discrepancics in validation performance between two trained
networks are due 0 expenimental differences such as tidden
layer configuration or data represeniation,

3.4 Problems to be Addressed

There are a number of areas in which further work is
regutred:

+ o Vahidation is assessed i a subjectve visual manner, A
more obicetive method of assessing validation will resall
in more measingfut conclusions.

t

(2) The model makes same day predictions of algal
quuntity. The ability 10 make forecasts of bicoms up 0
soveral weeks in advance witl be of moere use from an
operational management point of view,

(1) The relative effects of each of ke modifications
introduced in this study o improving Lthe species
pencrahity aver results by Recknagef ot al (19497a) have
a0t been dotermined. More caperiments are nccded w
quantily the importance of cach of these maodifications
e fudden amd nput layer configuration, removal of



interpolation, and increased training set representation
through cross-validation),

The modifications introduced in this swdy have
increased the computational expense of experiments
over previous neural network phytoplankton maodels -
the so-catled raining botlleneck.

4. CONCLUSION

This study demonsirates that a neural network model is
capable of making predictions of quantity of 2 broad spectrum
of problem algal species in a freshwater iake from water
quality dala. This work represents a stepping stone o the
uitimate aim of developing a model which can make short
term lorecasts of algal blooms.

Specific changes in methodology which have iead to the
improvement in model validity have not yet been quantified.
However, the benefit of careful hidden layer oplimisation has
been demonstrated.  An imparlant message from these resulis
is that the udden layer optimisation should be a high priorily
when investigating the effects of other changes in neural
network structure such as input layer configuration or data
representation.
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